Macrophage/epithelial cell CCL2 contributes to rhinovirus-induced hyperresponsiveness and inflammation in a mouse model of allergic airways disease.

نویسندگان

  • Dina Schneider
  • Jun Young Hong
  • Emily R Bowman
  • Yutein Chung
  • Deepti R Nagarkar
  • Christina L McHenry
  • Adam M Goldsmith
  • J Kelley Bentley
  • Toby C Lewis
  • Marc B Hershenson
چکیده

Human rhinovirus (HRV) infections lead to exacerbations of lower airways disease in asthmatic patients but not in healthy individuals. However, underlying mechanisms remain to be completely elucidated. We hypothesized that the Th2-driven allergic environment enhances HRV-induced CC chemokine production, leading to asthma exacerbations. Ovalbumin (OVA)-sensitized and -challenged mice inoculated with HRV showed significant increases in the expression of lung CC chemokine ligand (CCL)-2/monocyte chemotactic protein (MCP)-1, CCL4/macrophage inflammatory protein (MIP)-1β, CCL7/MCP-3, CCL19/MIP-3β, and CCL20/MIP3α compared with mice treated with OVA alone. Inhibition of CCL2 with neutralizing antibody significantly attenuated HRV-induced airways inflammation and hyperresponsiveness in OVA-treated mice. Immunohistochemical stains showed colocalization of CCL2 with HRV in epithelial cells and CD68-positive macrophages, and flow cytometry showed increased CCL2(+), CD11b(+) cells in the lungs of OVA-treated, HRV-infected mice. Compared with lung macrophages from naïve mice, macrophages from OVA-exposed mice expressed significantly more CCL2 in response to HRV infection ex vivo. Pretreatment of mouse lung macrophages and BEAS-2B human bronchial epithelial cells with interleukin (IL)-4 and IL-13 increased HRV-induced CCL2 expression, and mouse lung macrophages from IL-4 receptor knockout mice showed reduced CCL2 expression in response to HRV, suggesting that exposure to these Th2 cytokines plays a role in the altered HRV response. Finally, bronchoalveolar macrophages from children with asthma elaborated more CCL2 upon ex vivo exposure to HRV than cells from nonasthmatic patients. We conclude that CCL2 production by epithelial cells and macrophages contributes to HRV-induced airway hyperresponsiveness and inflammation in a mouse model of allergic airways disease and may play a role in HRV-induced asthma exacerbations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Macrophage activation state determines the response to rhinovirus infection in a mouse model of allergic asthma

BACKGROUND The mechanisms by which viruses cause asthma exacerbations are not precisely known. Previously, we showed that, in ovalbumin (OVA)-sensitized and -challenged mice with allergic airway inflammation, rhinovirus (RV) infection increases type 2 cytokine production from alternatively-activated (M2) airway macrophages, enhancing eosinophilic inflammation and airways hyperresponsiveness. In...

متن کامل

MDA5 and TLR3 Initiate Pro-Inflammatory Signaling Pathways Leading to Rhinovirus-Induced Airways Inflammation and Hyperresponsiveness

Rhinovirus (RV), a single-stranded RNA picornavirus, is the most frequent cause of asthma exacerbations. We previously demonstrated in human bronchial epithelial cells that melanoma differentiation-associated gene (MDA)-5 and the adaptor protein for Toll-like receptor (TLR)-3 are each required for maximal RV1B-induced interferon (IFN) responses. However, in vivo, the overall airway response to ...

متن کامل

The contribution of L-selectin to airway hyperresponsiveness in chronic allergic airways disease

UNLABELLED L-selectin is a cell adhesion molecule, which mediates leukocyte rolling on bronchopulmonary endothelium. Previous studies in a murine model of allergic airways disease have shown that L-selectin plays a role in the regulation of airway hyperresponsiveness in asthma via mechanisms independent of inflammation. Airway remodeling has been shown to modulate airway hyperresponsiveness ind...

متن کامل

Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment.

BACKGROUND Glucocorticoids are used as mainstay therapy for asthma, but some patients remain resistant to therapy. MicroRNAs (miRNAs) are important regulators of the immune system by promoting the catabolism of their target transcripts as well as attenuating their translation. The role of miRNA in regulating allergic inflammation remains largely unknown. Blocking miRNA function may provide a ne...

متن کامل

Rhinovirus infection in nonasthmatic subjects: effects on intrapulmonary airways.

The common cold is a highly prevalent, uncomplicated upper airway disease. However, rhinovirus (RV) infection can lead to exacerbation of asthma, with worsening in airway hyperresponsiveness and bronchial inflammation. The current authors questioned whether such involvement of the intrapulmonary airways is disease specific. Twelve nonatopic, healthy subjects (forced expiratory volume in one sec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 304 3  شماره 

صفحات  -

تاریخ انتشار 2013